函数与方程教学反思
篇一:函数方程不等式教学反思 《函数·方程·不等式》教学反思 广州市第一一三中学 廖娟年 一、教材内容的地位与作用:
函数与方程、不等式在初中数学教学中有重要地位,函数是初中数学教学的重点和难点之一。方程、不等式与函数综合题,历年来是中考热点之一,主要采用以函数为主线,将函数图象、性质和方程及不等式的相关知识进行综合运用,渗透数形结合的思想方法。
二、教学设计的整体构思 ㈠ 教学目标
1.复习和巩固一次函数和二次函数的图象与性质等基础知识。 2.加强一次函数,一次方程和一元一次不等式三者的联系 3.加强二次函数,一元二次方程和一元二次不等式三者的联系 4.会结合自变量的取值范围求实际问题的最值 ㈡ 教学重点
1、函数、方程和不等式三者的区别与联系。
2、运用函数、方程与不等式的关系及转化的思想方法解决函数
与方程、不等式的综合问题。 ㈢ 教学难点
对实际问题中二次函数的最值要结合自变量的取值范围及图像来解决,从而深化数形结合的思想方法。 ㈣ 学情分析
教学班为中等层次的班,学生的学习基础比较均衡,学习积极性高,但是拔尖的学生不多。本节课在学生第一轮复习了函数、方程、不等式有关知识的基础上,进一步研究解决函数、方程、不等式之间的联系与区别及三者相结合的综合题。 ㈤ 教学策略
以学生练习为主,讲练结合,通过环节二、环节三的练习及课件突出本节课的重点:加强了函数、方程和不等式三者的区别与联系,从而渗透数形结合和转化的思想。利用环节四让学生学会用函数和方程的思想来构建函数模型来解决实际问题,通过小组讨论,用集体的智慧突破本节课的难点:求实际问题的最值时,需对所得的函数结合自变量的取值范围及结合图像才能求得最值,从而让学生更深刻体会数形结合的数学思想。 三、教学反思:
㈠ 结构严谨,环环相扣,层现清晰
本节课用五个环节组织教学。环节一是知识的回顾,这部分复习了函数、方程、不等式的基础知识,引入部分简单过渡,激发兴趣,为后面作铺垫。环节二的问题1是有关一次函数,一次方
程和一元一次不等式的联系与区别,环节三的问题2是二次函数、一元二次方程和一元二次不等式之间的相互转化,这两个环节的两个问题是姐妹题,加强了学生对一次函数和二次图象的认识以及通过观察函数图象得出变量的范围,渗透数形结合的思想,同时由环节二的一次函数过渡到环节三的二次函数,由浅入深地把函数、方程、不等式三者联系起来。然后过渡到本节课的难点――环节四:二次函数的实际应用。环节四是实际问题的应用及其变式训练,这一环节的训练,旨在拓展深化,发展学生智能,让学生学会用函数与方程的思想来解决实际问题,通过对实际问题的分析,寻找出变量之间的函数关系,并能利用函数的图象和性质求出实际问题的答案。体会函数模型是解决实际问题的一种重要的数学模型,便于获得解决问题的经验。养成积极探索的学习态度,感受数学的应用价值,培养学数学用数学的观念,这也是本节课的知识点的拓展与提升。最后环节五的总结提高部分由学生讨论归纳,对整节课的内容进行回顾整理,让每一部分的内容重新清晰呈现。五个环节紧密联系,层层递进,环环相扣,清晰明了地突破重难点。
㈡ 教师为主导、学生为主体,把课堂还给学生
在教学的过程中,学生是教学的主体,所以发挥学生的主动性相当的重要。本节课是在学生第一轮复习了函数、方程、不等式有关知识的基础上教学的,是学生学习的又一次综合与扩展。如何引导学生进一步研究解决函数、方程、不等式之间的联系与区
别及三者相结合的综合题,是我设计本堂课时应特别注意的。我设计的教学方法是讲练结合,学生练习用了20-22分钟,学生小组讨论3-4分钟,老师大概讲了12-15分钟,引导.提问个别学生分析问题及回答问题约8-10分钟,整节课以学生的练习为主,留充分的时间和空间给学生思考。教师精讲多练,且能讲在关键处,注重引导学生分析问题并解决问题,师生互动较多,教学方式灵活多样,充分调动了学生学习的积极性。整节课充分体现了新课标的教学理念:教师为主导、学生为主体,把课堂还给学生。
㈢ 及时小结,及时反馈
课堂教学是一个有序的教学过程,教材知识的内在逻辑顺序和学生认知结构发展的顺序决定了教学过程必须是一个循序渐进、环环相扣的过程。因此,对于每一环节的教学,我都能恰到好处进行点评、反馈及小结,总结该环节用到的知识点及其解决问题的方法与技巧,对教学目标中的思想内容、能力要求、知识要点进行简明扼要的梳理概括,这样既可概括前
一个问题的主要内容,有助于学生理解、掌握,又能巧妙地引出后一个问题的讲解。起到承前启后的作用,使知识有机衔接起来,形成一个有序的整体,既可使整堂课的教学内容系统化,增强学生的整体印象,又可以促使学生的思维不断深化,诱发继续学习的积极性。
㈣ 课件精美,提高效率
本课节主要是以PPT载体,中间穿插了几何画板,直观、形象、动态地展现知识的形成过程,刺激学生的感官,启发学生思维。通过课件,充分体现了数形结合,突出了本节课的重点:方程或不等式的解实质就是函数值y取特殊值时对应自变量x的取值.从而使题目化难为简。另外对于一些重要地方用批注形式加以解释,引起学生的有意注意,让学生更容易理解、印象更深刻,大大提高了课堂教学的有效性。 ㈤ 小组讨论,突破难点
本节课的最亮点是环节四问题3的变式练习“若把‘墙长20m’改为‘墙长15m’,情况又会如何?”的处理,我采用的方法是让学生通过小组讨论找出本题与问题3在解答上的异同,并要求学生把不同之处用另一颜色笔在问题3的求解过程的基础上改动,然后引导学生(个别提问)分析讲解,老师再用PPT演示加以点评。学生通过此变式训练能发现当二次函数顶点坐标的纵坐标不是最值时,需对所得的函数结合自变量的取值范围及结合图像才能求得最值,学生更深刻地体会了数形结合的数学思想。数学课堂上也显示出情感态度价值:用集体的智慧突破本节课的难点,学生有了成功的喜悦。 四、不足之处
环节三的巩固练习的反馈,我采用课件演示讲解。如果用实物投影来点评学生的答案,更深入一点讲解,教学效果会更好。 附教学过程设计
【环节一】:知识的回顾
1、抛物线y=-2(x-1)2+3的顶点坐标是____,当x=__时,y有最_值为____
2、(1)y?2x?6与x轴的交点坐标为y轴的交点坐标为(2)函数y=x2-x与x轴交点的坐标是:,与y轴的交点坐标是:; 3、抛物线y=x2-2x+3与x轴有______个交点。
设计意图:这部分的学习为后面作铺垫,目的是巩固基础知识 【环节二】一次函数,一次方程和一元一次不等式的联系 问题1、观察一次函数y?kx?b的图象并根据图象回答: (1)x取什么值时,函数值y=0 ? (2)x取什么值时,函数值y=-3 ? (3)x取什么值时,函数值-3y?0?
设计意图:加强对一次函数图象的认识以及通过函数图象得出变量的范围,渗透数形结合的思想。希望学生通过观察一次函数的图象得出变量的范围,可能会有个别学生通过解不等式求变量的范围,如果这样的话更好,老师可以让学生对照和评价两种方法的优劣。同时希望通过这一环节由浅入深地把函数,方程和不等式三者联系起来。
【环节三】二次函数、一元二次方程和一元二次不等式的关系 问题2、(07贵阳改编)二次函数y?ax2?bx?c(a?0)的图象 如图所示,根据图象解答下列问题: (1)写出方程ax?bx?c?0的两个根.
(2)写出不等式ax?bx?c?0的解集.
(3)写出y随x的增大而减小的自变量x的取值范围. (4)写出方程ax?bx?c??6的实数根:
(5)若方程ax?bx?c?k有两个不相等的实数根,写出 2222 k的取值范围.
小结:函数与方程、函数与不等式紧密联系,方程、不等式的解(解集)实质就是函数值y取特殊值时对应的自变量x的取值,其中第(4)、(5)小题还要有转化的思想。
设计意图:本题是问题1的姐妹题,沟通了二次函数,一元二次方程和一元二次不等式三者的联系,设计目的是加强对二次函数图象的认识以及通过观察函数图象得出变量的范围,再次体会数形结合和转化的数学思想。 巩固练习:
1.(07宁波)如图,是一次函数y=kx+b与反比例函数y=22的图像,则关于x的方程kx+b=的解为( ) xx
(A)xl=1,x2=2 (B)xl=-2,x2=-1(C)xl=1,x2=-2(D)xl=2,x2=-1 2.(2007江西省)已知二次函数y??x?2x?m的部分图象如图所示,则关于x的一元二次方程2 x22xm0的解为
3、已知二次函数y1?ax?bx?c(a≠0)与一次函数y2?kx?m(k≠0)的图像交于点A(-2,4),B(8,2),如图所示,则能使y1?y2成立的x的取值范围是()
2
A、x??2B、x?8C、?2?x?8 D、x??2或x?8 【环节四】用函数和方程的思想解决实际问题
问题3、学校要在一块一边靠墙(墙长20m)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为40m的栅栏围成(如图所示)
.若设花园的BC边长为x(m),花园的面积为y(m) .
(1)求y与x之间的函数关系式,并写出自变量x的取值范围; (2)满足条件的花园面积能达到200 m吗?若能,求出此时x的值;若不能,说明理由;
(3)当x取何值时,花园的面积最大?最大面积为多少? 小结:不能利用待定系数确定函数解析式时,常常可以通过列方程的思想来解决实际问题。此题复合了一次函数、二次函数,并对所得的函数结合自变量的取值范围来考虑最值。
设计意图:本题是本节课知识的拓展,设计的目的是希望学生学会用函数和方程的思想去解决实际问题,第二小题体现的是把二次函数转化求一元二次方程的根来解决,第三小题让学生回顾求二次函数的最值的两种方法:把二次函数的一般式通过配方化成顶点式或直接用顶点公式法求得最值,但都要讨论自变量是否在其取值范围内。
变式练习:若把“墙长20m”改为“墙长15m”,情况又会如何?
小结:当二次函数顶点坐标的纵坐标不是最值时,需对所得的函数结合自变量的取值范围并结合图像才能求得最值。
设计意图:通过小组讨论找出本题与问题3在解答上的异同,并要求学生把不同之处用另一颜色笔在问题3的求解过程的基出上改动,老师再通过PPT演示点评。希望学生通过此变式训练能发现当二次函数顶点坐标的纵坐标不是最值时,需对所得的函数结合自变量的取值范围及结合图像才能求得最值,从而让学生更深刻体会数形结合的数学思想。 【环节五】总结提高
1、理解函数与方程,不等式之间的关系;
2、求实际问题的最值时要注意结合自变量的取值范围及结合图象来考虑。
22(第1题) (第2题) (第3题) 篇二:方程的根与函数的零点教学反思 3.1.1 方程的根与函数的零点”教学反思 朱河中学 李丹
“方程的根与函数的零点”是高中课程标准新增的内容,教材用了三个版面(人民教育出版社《普通高中课程标准试验教科书·数学1(必修)A版》P.86—87)介绍本课。从表面上看,这一内容的教学并不困难,但要让学生真正理解,在教学设计和难点突破上需要下足够的功夫。实施本节课的教学,得到一些感悟。 一、背景分析
1、学习任务分析
函数与方程是中学数学的重要内容,既是初等数学的基础,又是初等数学与高等数学的连接纽带。在新课程教学中有着不可替代的重要位置.为什么要引进函数的零点?原因是要用函数的观点统帅中学数学,把解方程问题纳入到函数问题中.引入函数的零点,解方程的问题就变成了求函数的零点问题.
就本章而言,本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形.它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3.1.2)加以应用,通过建立函数模型以及模型的求解(3.2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系.即体现了函数与方程的思想,又渗透了数形结合的思想.总之,本节课渗透着重要的数学思想 “特殊到一般的归纳思想” “方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。 2、 学生情况分析
学生在学习本节内容之前已经学习了函数的图象和性质,理解了函数图象与性质之间的关系,尤其熟悉二次函数,并且已经具有一定的数形结合思想,这为理解函数的零点提供了直观认识,并为
求出零点提供了支持,但学生基础普遍较差,因此在设计导学案的时候,都是以基础为主,没有把函数零点的存在性放在里面,主要是理解函数零点的概念和三者之间的关系,为后面零点的存在性和零点的分布打好基础。而且学生有一定的方程知识的基础,熟悉从特殊到一般的归纳方法,这为深入理解函数的零点及方程的根与函数零点的联系提供了依据.但学生对于函数与方程之间的联系缺乏一定的认识,对于综合应用函数图象与性质尚不够熟练,这些都给学生在联系函数与方程,发现函数的零点造成了一定的难度。因此教学中尽可能提供学生动手实践的机会,让学生亲身体验中掌握知识与方法,充分利用学生熟悉的二次函数图象和一元二次方程通过直观感受发现并归纳出函数零点的概念;在函数零点存在性的判定方法的教学时应该为学生创设适当的问题情境,激发学生的思维引导学生通过观察、计算、作图、思考理解问题的本质。
二、本节课的内容、地位、核心
本节课的内容就是三个“一”:一个概念(函数零点)、一种关系(函数零点、方程的根、函数图象与x轴交点的横坐标三者的等价关系)、一个方法(求函数零点的方法)。它反映了方程与函数的联系,体现了“数”与形的辩证统一,增加了函数的“应用点”,体现了函数应用的广泛性,具体诠释了“数学是有用的”。本节课的核心内容是函数零点、方程的根、函数图象与x轴交点的横坐标三者的关系,从而得到如何求函数零点的方法,这既是
本节课的重点又是难点。 三、本节课的成功之处 1.新课的引入
简单介绍了章头话,说明本章的任务——运用函数的思想,建立函数模型,去解决现实生活中的一些简单问题。给出三个方程:(1) ; (2);(3)。
为引入新课作铺垫,得到函数零点的概念。函数零点、方程的根、函数图象与x轴交点的横坐标三者的等价关系。 2.难点的突破
学生有一定的方程知识的基础,熟悉从特殊到一般的归纳方法。同时通过一元二次方程的判别式来探讨函数的零点,方程的根以及函数图像与X轴的交点三者之间的关系。逐层铺垫,降低难度由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形.恰当使用信息技术,让学生直观形象地理解问题,了解知识的形成过程. 采用“启发—探究—讨论”教学模式,精心设置一个个问题链,给每个学生提供思考、创造、表现和成功的机 3.课堂小结
课堂小结中为了让学生记忆深刻,巩固知识,将本节课的知识点”归结为一首小诗:函数零点方程根,形数本是同根生。读起来朗朗上口,容易记忆,又道出了“函数零点”的定义,数形结
合这一重要的的数学思想方法。 三、本节课值得思考之处
1.对学生估计不足,学生面对全校的数学专家,开场时有点怯场,思维受阻,导致一些该引导学生回答的问题,老师代劳了,学生的主体作用未得到充分体现。
2.对现代教育手段的使用,由于能力有限,未能做出精美生动的图形变化来刺激学生的思维,更好地辅助教学。 篇三:“方程的根与函数的零点”教学反思 “方程的根与函数的零点”教学反思 重庆中山外国语实验学校 (404500) 陈远才
方程的根与函数的零点是高中课程标准新增的内容,表面上看,这一内容的教学并不困难,有的学生认为也没什么可学的,有的老师也在议论这节怎么教,怎么考?。今天,两堂新授课后,与部分学生进行了交流,都认为能听懂,但是,通过作业检测,效果明显不好。总的来说,教学效果都不甚理想,暴露出了一些共同的问题,看来具有一定的代表性。下面就两堂课共同存在的问题,谈一谈需要妥善处理其中的一些问题 :
一、要让学生认识到学习函数的零点的必要性
教材是利用一元二次方程的例子来引入函数的零点。这样处理,主要是想让学生在原有二次函数的认知基础上,使其知识得到自然的发生发展。理解了像二次函数这样简单的函数的零点,再来理解其他复杂的函数的零点就会容易一些。但在教学时,就得注
意处理的方式了。
我这两堂课的教学都和教材一样,也是利用一个一元二次方程来引入,围绕怎样判断所给方程是否有实根来提出问题。并且都利用了教材中的方程提出了下列问题: 方程x2-2x-3=0是否有实根?你是怎样判断的?
结果,学生的反应都很平淡,大多数人对这个问题都不感兴趣。课后学生认为,大家对如何解一元二次方程早就熟练了,老师没必要再问那么简单的问题了。由此看来,这堂课一开始就应该让学生认识到学习函数的零点的必要性。教师所选择的例子,最好是学生用已学方法不能求解的方程,这样才能激发学生的学习积极性,并让其认识到学习函数的零点的必要性。例如,可以举下面的例子,让学生思考:
方程lnx+2x-6=0是否有实根?为什么?
在学生对上述问题一筹莫展时,再回到一元二次方程上,引导学生利用函数的图象和性质来研究方程的根。先质疑,整堂课就活了。
二、一元二次方程根的存在的实质
当老师问到一元二次方程 x2+4x– 5=0是否有实根时,两个班的学生很快就用根的判别式作出了判断,没有一位学生用方程相应的函数图象进行分析。于是,又引导学生作出一元二次方程相应的函数的图象,并建立方程的根与函数图象和x轴交点的联系。值得注意的是,在上述活动中,学生认为,因为一元二次方程根
的判别式的大小有三种情
况,所以一元二次方程相应的函数图象和x轴的交点就有三种情况,看来,学生对一元二次方程根存在的本质原因都不清楚,都误以为是其判别式的大小.教学中教师必须指明,虽然我们可以用判别式来判断一元二次方程根的存在,但其根存在的实质是相应的函数图象和x轴有交点,故对于没有判别式的其他方程就可以根据相应的函数图象来判断了。
没有揭露出方程根存在的本质原因是相应函数的零点的存在,那么就会导致学生对引入函数零点的必要性缺乏深刻的认识,以为结合函数图象并利用f(a)*f(b)的值与0的关系判断方程根的存在只是其中的一种方法或技巧,而认识不到其一般性和本质性。所以,教学在研究一元二次方程与其相应函数图象的关系时,关键要以函数图象为纽带,建立一元二次方程的根与相应函数零点之间的关系,让学生理解方程根存在的本质以及判断方程根存在的一般方法。这样,才能将所得到的判断方程根存在的方法推广到一般情况,并使学生对方程根存在的认识不仅仅停留在判别式或函数图象上。
三、根据图象能否判断函数是否有零点以及零点的个数 两堂课都谈到,要判断函数f(x)在(a,b)内是否有零点,应该先观察函数f(x)的图象在(a,b)内是否与x轴有交点,再证明是否有f(a)*f(b)0。但是,教学中却没有对证明的必要性展开讨论。结果,从课后了解到,学生都以为观察图象与x轴是否有交点,
再证明是否有f(a)*f(b)0,就可以判断函数f(x)在(a,b)内是否有零点,是判断函数是否有零点以及零点的个数的唯一办法与途径。看来,教师有必要引导学生认识证明的必要性。 四、教学要把握内容结构,突出数学思想方法
教师首先要通过把握教材内容结构来设计教学框架,然后根据教学框架来考虑需要突出的思想方法。本节课可以按照下列主线来展开教学:
(一)如何引导学生将复杂的问题简单化,并学会从已有认知结构出发由特殊到一般地思考问题
教材设置函数的零点这一内容的目的,就是为了体现函数的应用,为用二分法求方程的近似解奠定基础。所以,教学一开始就应该从学生用已学方法不能求解的方程出发展开讨论,然后引导学生体会其中的思想方法。例如,可以像前面一样先提出:方程lnx+2x-6=0是否有实根?为什么?当学生陷入困境时,教师再逐步提出下面的问题进行引导:
1.当遇到一个复杂的问题,我们一般应该怎么办?
以此来引导学生将复杂的问题简单化,寻找类似的简单问题的解决方法。
2.以前我们如何判断一个方程是否有实根,这对研究这个方程是否有帮助?
以此来引导学生从已有认知结构出发,将解决简单方程的方法迁移到不能求解的方程中去,学会从特殊到一般的思维方法。
3.除了用判别式可以判断一元二次方程根的情况,还有其他的方法吗?
以此来引导学生建立方程与函数的联系,渗透函数与方程的思想方法,并培养其从不同角度思考问题的习惯。 (二)怎样突出数形结合的思想方法
数形结合的思想方法几乎贯穿于“基本初等函数I”一章的始终,学生通过前面的学习,已基本形成数形结合的思想方法,所以本节教学应该以培养学生主动运用数形结合的思想方法去分析问题为目的。但是,在两堂课中,教师却没有留给学生主动运用数形结合思想方法的空间。
在建立方程的根与函数的零点的关系时,函数图象起到了关键的桥梁作用,充分体现了它与方程的根以及函数零点之间的数形结合的关系。但是,两位教师却没有留给学生足够的时间去主动搭建函数图象这一桥梁,而是由教师作出函数图象,让学生回答方程的根与函数图象和x轴的交点有何关系,然后老师再给出方程的根、函数图象和x轴的交点、函数的零点之间的关系。这样的教学,虽然一定程度上也能体现数形结合的思想方法,但体现的思想层次却很低。在这种能够体现思想方法的关键地方,教师要舍得花时间,要让学生由方程自觉地联想到相应的函数,主动地建立方程的根与函数图象间的关系,提升数形结合思想方法的层次,增强函数应用的意识。 (三)如何从直观到抽象
教材是通过由直观到抽象的过程,才得到判断函数f(x)在(a,b)内有零点的一种条件。如何让学生从直观自然地到抽象,有下面几个教学难点需要处理:
1.如何引导学生用f(a)*f(b)0来说明函数f(x)在(a,b)内有零点
教材是先从函数图象出发,让学生通过观察函数f(x)的图象在(a,b)内是否与x轴有交点,来认识函数f(x)在(a,b)内是否有零点。这是一个直观认识的过程,对学生来说并不困难。然后再让学生认识,f(a)*f(b)0则函数f(x)的图象在(a,b)内与x轴有交点。不过,这却是一个由直观到抽象的飞跃,对学生来说是有困难的。教学的关键在于,如何引导学生由函数f(x)的图象穿过x轴在(a,b)的部分,联想到f(a)*f(b)0。为此,我们不妨可以通过下列问题来启发学生:
(1)我们看到,当函数f(x)的图象穿过x轴时,函数f(x)的图象就与x轴产生了交点。如果不作出函数f(x)的图象,你又如何判断函数f(x)的图象与x轴有交点?
(2)函数f(x)的图象穿过x轴这是几何现象,那么如何用代数形式来描述呢?
(3)函数f(x)的图象穿过x轴其实就是穿过与x轴的交点周围的部分,比如(a,b)。在区间(a,b)内,如何用代数形式来描述呢?
(4)如果函数f(x)的图象与x轴的交点为(c,0),那么函数f(x)
分别在区间(a,c)和区间(c,b)上的值各有什么特点?这对我们用代数形式进行描述有何帮助?
(5)函数f(x)在区间(a,b)上有f(a)f(b)<0,那么函数f(x)在区间(a,b)上是否一定存在零点,请举例说明。 比如“f(x)=
1X在区1,1)上有f(-1)f(1)<0,但是f(x)=0在 (-1,1)上没有实数根。”
大家都觉得这个例子很精彩。确实,举反例常常不是件容易的事。
(6)函数f(x)在区间(a,b)上有f(a)f(b)<0,且有零点,那么一定只有一个吗?请举例说明。
画出下列图象让学生讨论,然(转 载于:www.cdFDs.cOM 池锝 网:函数与方程教学反思)后得出结论 图1 图2 图3图4
学生们认真思考,积极参与,热情很高。这样的教学可以达到促进学生发展的目的,特别是发展学生的思维能力!
(7)函数值在区间(a,b)上连续且存在零点,则它在区间(a,b)端点的函数值一定有f(a)f(b)<0吗?
这就已经获得了函数零点存在条件:函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么函数y=f(x)在区间[a,b]上有零点。即存在c∈(a,b),使得f(c)=0,这个c就是方程f(c)=0的根。还要明确定理只
能判定零点的存在性,不能判断零点的个数.
接着让学生研究:方程lnx+2x-6=0是否有实数根,并估计根所在区间。
大多数学生采用,在同一个坐标系中同时画出函数y=lnx与函数y=6-2x的图象(图
5),估计出它们交点的横坐标所在的区间是(1,3),这并不困难。教师再用几何画板画出函数f(x)=lnx+2x-6的图象,同样判断函数f(x)= lnx+2x-6在区间(1,
3)上有一个零点。这为下一节课用“二分法”缩小区间长度寻找这个解的近似值打下伏笔。
2.如何引导学生判断函数f(x)在(a,b)内的零点个数 要判断函数f(x)在(a,b)内的零点个数,可先观察函数f(x)的图象在(a,b)内与x轴有几个交点,再进行证明。这同样是一个从直观到抽象的过程,教学需要处理好
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- vipyiyao.com 版权所有 湘ICP备2023022495号-8
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务