1
2
2、由以上可知当三角形COQ的面积为24/2=12时,ABQP与CPQ的面积相等,
即1/2*t*(6-t/5)=12,解得(t+15)^2=-115,题无解.所以不能相等.
3
如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为A(14,0)、B(14,3)、C(4,3),点P、Q为两动点,同时从原点出发,分别作匀速运动,其中P点沿OA向终点A运动,速度为每秒1个单位;点Q沿OC、CB向终点B运动,速度为每秒2个单位.且当这两点中有一点到达自己的终点时,另一点也停止运动.设运动的时间为t秒.
(1)写出点Q分别在OC和CB上时的坐标(用含t 的代数式表示).
(2)是否存在t的值,使得OPQC为等腰梯形?若存在,求出相应的t 值和P、Q两点的坐标;若不存在,请说明理由.
(3)是否存在t的值,使得PQ把梯形OABC的面积分成相等的两部分?若存在,求出相应的t值和P、Q的坐标;若不存在,请说明理由.
4
5