题目如标题,题目用到了分而治之的算法思想,以下是分而治之的定义:
这是自己大一暑假写的逐次遍历的方法
时间复杂度是O(n²)
#include<stdio.h>
#define MAX 100000
int main()
{
int i,j,n,maxSum,tempSum,a[MAX];
scanf("%d",&n);
for(i=0;i<n;i++)
{
scanf("%d",&a[i]);
}
maxSum=0;
for(i=0;i<n;i++)
{
tempSum=0;
for(j=i;j<n;j++)
{
tempSum+=a[j];
if(tempSum>maxSum)
maxSum=tempSum;
}
}
printf("%d",maxSum);
}
以下是分而治之的方法
T ( N ) =O( N log N )
int MaxSum(int a[],int left,int right);
int threeOfMax(int a1,int a2,int a3);
int centerMaxSum(int a[],int left,int right);
```c
#include<stdio.h>
#define N 50
int MaxSum(int a[],int left,int right);
int centerMaxSum(int a[],int left,int right);
int threeOfMax(int a1,int a2,int a3);
int main(){
int n;
int a[N];
printf("请设置数组位数n:\n");
scanf("%d",&n);
printf("请输入数值:\n");
for(int i = 0;i<n;i++){
scanf("%d",&a[i]);
}
int left=0;
int right=n-1;
int maxSubSum = MaxSum(a,left,right);
printf("最大子序列的和为:%d\n",maxSubSum);
return 0;
}
int MaxSum(int a[],int left,int right){
int a1,a2,a3,i;
int MaxLeftSum, MaxRightSum;
int MaxLeftBorderSum, MaxRightBorderSum;
int LeftBorderSum, RightBorderSum;
if(left==right){
if( a[left] > 0 )
return a[left];
else
return 0;
}
int mid = (left+right)/2;
a1 = MaxSum(a,left,mid);
a2 = MaxSum(a,mid+1,right);
MaxLeftBorderSum = 0;
LeftBorderSum = 0;
for( i=mid; i>=left; i-- )
{
LeftBorderSum += a[i];
if( LeftBorderSum > MaxLeftBorderSum )
MaxLeftBorderSum = LeftBorderSum;
}
MaxRightBorderSum = 0;
RightBorderSum = 0;
for( i=mid+1; i<=right; i++ )
{
RightBorderSum += a[i];
if( RightBorderSum > MaxRightBorderSum )
MaxRightBorderSum = RightBorderSum;
}
a3 =centerMaxSum(a,left,right);;
return threeOfMax( MaxLeftSum, MaxRightSum, MaxLeftBorderSum + MaxRightBorderSum );
}
int centerMaxSum(int a[],int left,int right){
int leftSum = 0;
int rightSum = 0;
int templeftSum = 0;
int temprightSum = 0;
int mid=(left+right)/2;
for(int i = mid;i>=left;i--){
templeftSum = templeftSum+a[i];
if(templeftSum>leftSum)
leftSum=templeftSum;
}
for(int j = mid+1;j<=right;j++){
temprightSum = temprightSum+a[j];
if(temprightSum>rightSum)
rightSum=temprightSum;
}
return leftSum+rightSum;
}
int threeOfMax(int a1,int a2,int a3){
int maxSum = a1>a2?a1:a2;
return maxSum>a3?maxSum:a3;
}
摘自